Has European Synthetic Biology Come of Age?

Within a few years synthetic biology has evolved from being a new player in the molecular biology and biotech arena, to being a front row contender with multiple industrial advances and large amounts of investor money. I spoke to some experts in the field to find out how the field has developed, what the hot areas are in 2018 and what we can expect for the future.

There have been a number of definitions of synthetic biology, but generally it involves using engineering techniques to design new chromosomes or cells, or re-engineer existing ones. Although there were some earlier uses of synthetic biology, the field really took off after the sequencing of the human genome in 2003. An early proponent of applying engineering principles to molecular biology in this way was Craig Venter, an American researcher and entrepreneur who created one of the first artificial chromosomes of a virus in 2003 and the first synthetic bacterial genome in 2008.

Since then, the field has advanced quickly thanks to convergent developments in related technology such as the rapid advances in and reductions in cost of next generation sequencing. Academic competitions such as iGEM — the International Genetically Engineered Machine competition, which began in 2003, have also helped to raise awareness of synthetic biology and to attract young pioneers to the field.


Evolution of an industry

Paul Freemont, a Professor at Imperial College London, is a senior figure in synthetic biology in the UK as a founder of the Centre for Synthetic Biology at Imperial College and the synbio accelerator SynbiCITE.

He believes an early stumbling block was how to define synthetic biology. “I used to go to meetings and the whole meeting would be around defining what is synthetic biology. The name doesn’t help, I think.”

According to Freemont, systemic design using a design, build, test, learn cycle has helped synthetic biology get to where it is today. “This is now building design into the whole process. Up until that point, people weren’t designing systems in a systemic nature, so that differentiated it.”

This concept has more recently been used to help create the ‘foundry’ concept. For example by automating all the processes you need in molecular biology and putting them into liquid handling robots, and high throughput workflows sing the systemic design cycle concepts.

Commercial Director of UK-based SynbiCITE, John Collins, agrees but thinks the advances in supercomputers and the broad availability of such technology have also contributed.

“The development of our computer technology and ways in which we can manipulate data and model and simulate it has come on aeons… In the last 15 years, we’ve gone from not really being able to do describe very much in detail to a point where we can actually look at the human genome and start to manipulate the data so we can understand how we can edit it.”


John Cumbers, the founder of SynBioBeta, the international synthetic biology network, believes that the influx of engineers and computer scientists into the field of biology has a lot to do with the speed of development and changes over the last 10 years.

“For decades, biologists have been content with poor reproducibility. A new cadre of engineers are coming into the field of biology with the goal of making it easier to engineer. They’re having a big impact with strain engineering companies like Ginkgo and Zymergen applying cutting edge tools to make more reliable organisms, and automation companies such as Labcyte and Berkeley Lights creating brand new platforms that allow for much better reproducibility. It is a very exciting time in the field.”

Consumer-driven revolution

A noticeable change in the last few years has been a move away from a strict focus on health and medical applications of the technology. “Even in the few years I have been working I have seen a change from purely healthcare focused applications of synthetic biology to solving problems in industry and consumer products,” explained Thomas Meany, co-founder and CEO of London-based synthetic biology start-up Cell Free Tech.

Freemont concurs and cites the recently published research on the creation and manipulation of functional, synthetic yeast chromosomes as being his highlight of the last couple of years. “It’s really challenging our concepts about genome organisation, big time. And I think that’s extraordinary.”

He believes this research has massive potential for industrial biotech. “You can get yeast strains that grow at 42 degrees, you can get yeast strains that are much more alcohol tolerant, which could all have bioproduction opportunities.”

In addition to developing new and more useful strains of yeast, synthetic biology is currently being used by a number of companies, largely in the US, to create interesting, non-health related products. These include luxury artificial leather, mushroom materials for building and insulation, cloth and fibers from genetically engineered spider silk and new types of petfoods.

Industrial biotech and synthetic biology company Deinove launched its first commercial product this year, a carotenoid produced using extremophile bacteria that have been modified using synthetic biology.

“Investors see the promise behind synbio being able to produce many molecules in a much more sustainable and efficient way. With synbio, any metabolic pathway is theoretically accessible and inventing molecules that can make a real difference will multiply,” the company’s CEO, Emmanuel Petiot, told me.

“Even though there are still a clear number of roadblocks in terms of acceptance of the technology, things have improved to the point where people truly believe that it is an efficient and sound way to improve production level and hence commercial scalability of various compounds.”

An exciting year for synbio?

While the US is still very much the leader in the field, with the most companies (approximately 300 were founded in 2017 alone) and investment to date, Europe is slowly but surely catching up. The UK is ahead of the pack in Europe, accounting for 81 of about 500 new global synbio startups founded in 2017, versus 20 founded in France, 12 in Switzerland and 11 in Germany in the same year.

“I think the number of new companies in the field is staggering,” Cumbers told me. “The cost of starting a startup company has gone down dramatically and the number of startup accelerators such as Y Combinator and IndieBio are enabling that.”

A 2018 report released by SynBioBeta shows that by early August global investment was already 73% higher than in 2017 with €1.7B invested by VCs. It remains to be seen how high this will be by January 2019. Projections suggest almost €3B, and the level of investment shows that synthetic biology is really coming into its own as an industry.

“I think that investors are investing in synthetic biology because they’re excited about the 10 and 50 year vision for where this field is going to go. A lot of Silicon Valley money is investing because they see it as the next programmable matter. It’s a very exciting time to be investing and running a company in this area,” said Cumbers.

Hampus Jakobsson, Venture Partner at BlueYard Capital in Berlin, a company that invests in synthetic biology, told me:I forecast that synbio will be a field to see completely new funding the coming years. Previously, the only source of funding has been from big research and universities. Just like AI and quantum computing got massive attention from commercial, venture capital, and national interests, so will synbio.”

Future directions

Although Europe is definitely moving in the right direction, it seems that it has a long way to go to catch up with the US in terms of academic research, numbers of companies and overall investment in the sector.

“Europe is attracting comparatively more funding, but still lags the USA considerably,” notes Meany. He believes this may be, at least partly, due to cultural differences. “The US is just a more entrepreneurial society. In the US, students will drop out of college and start a business. Investors will back burning passion and drive. In Europe people just don’t do that.”

Petiot says the investment trends agree with this. “When you can raise €1–10M in Europe based on synbio technologies, you can raise several hundred million in the US. The gap needs to be somehow closed if Europe wants to rise as a real synbio power.”

Another, often overlooked player in synthetic biology is China. “They don’t just throw money at it like I think the Americans do. They really throw brainpower,” said Collins. “They’ll erect the buildings super fast, they’ll fill it with the best brains, they’ll give it all the equipment it needs and then, they’ll say, ‘Right, go off and do, and let’s turn this around.’”

Meany also thinks China has a lot of potential. “It is probably the place that best combines combines entrepreneurial flair, funding and a large integrated marketplace.”

There is no doubt the field will continue to develop and is a rapidly changing area. For example, the cost of creating synthetic DNA will almost certainly drop significantly, according to Freemont. He believes this will drive innovation in the same way that automation, increased efficiency and lower costs of next generation sequencing have done to date.

“In terms of where we are in the cycle I think we are well off the hype and in the consolidation stage now,” emphasised Freemont. “Companies are buying each other and there is a lot of trade sales going on. There is a new value chain being produced in synbio and it’s beginning to consolidate itself into a proper, albeit new industry.” 

Images via Shutterstock

Let's Continue The Conversation

Feel free to send us comments about this article to comments@labiotech.eu and/or comment on that article on social media.

We use cookies to give you the best experience and for advertising purposes. By accepting, you support our independent media and it's freely accessible content.